
2017-18
Onwards
(MR-17)

MALLA REDDY ENGINEERING COLLEGE
(Autonomous)

B.Tech.
VII Semester

Code:70617 SOFTWARE TESTING METHODOLOGIES LAB L T P

Credits: 2 - - 4

Prerequisites: Software Engineering

Course Objectives:
This Course enables the students to understand the principles and need for various types of testing
test adequacy assessment using: data flow, transaction flow and path testing, describe strategies for
generating system test cases, apply the essential characteristics of path product and regular
expressions, and explain about the people, organizational issues in Testing.

Software Requirements: Turbo C
List of Programs:
1 Write programs in ‘C’ Language to demonstrate the working of the following constructs:

i) do...while

ii) while….do

iii) if…else

iv) switch

v) for

2. “A program written in ‘C’ language for Matrix Multiplication fails” Introspect the causes for its

failure and write down the possible reasons for its failure.

3. Take any system (e.g. ATM system) and study its system specifications and report the various

bugs.

4. Write the test cases for any known application (e.g. Banking application)

5. Create a test plan document for any application (e.g. Library Management System)

6. Study of Win Runner Testing Tool and its implementation

a) Win runner Testing Process and Win runner User Interface.

b) How Win Runner identifies GUI(Graphical User Interface) objects in an application and

describes the two modes for organizing GUI map files.

c) How to record a test script and explains the basics of Test Script Language (TSL).

7. Implement Win runner and perform the following functionalities

a) How to synchronize a test when the application responds slowly.

b) How to create a test that checks GUI objects and compare the behaviour of GUI objects in

different versions of the sample application.

8. Implement Win runner and perform the following functionalities

a) How to create and run a test that checks bitmaps in your application and run the test on

different versions of the sample application and examine any differences, pixel by pixel.

b) How to Create Data-Driven Tests which supports to run a single test on several sets of data

from a data table.

9. Implement the following using Win Runner

a) How to read and check text found in GUI objects and bitmaps.

b) How to create a batch test that automatically runs the tests.

10. Implement the following using Win Runner

How to update the GUI object descriptions which in turn supports test scripts as the

application changes.

11. Apply Win Runner testing tool implementation in any real time applications.

12. Study of any test management tool and any open source testing tool

TEXTBOOKS:
1. Boris Beizer, “Software Testing Techniques”,Dream tech Press, 2003.

REFERENCES:
1. Renu Rajni,“Software Testing; Effective Methods Tools and Testing”, PHI.
2. Srinivasan Desikan, “Software Testing Principles and Practices”

Course Outcomes:
At the end of the course, students will be able to
1. Solve specific problems alone or in teams.
2. Manage a project from beginning to end.
3. Understand team management.
4. Define, formulate and analyze a problem.

Page 1

Malla Reddy Engineering College (A)

Department of Information Technology

III B. Tech I SEM (MR17)

Software Testing Methodologies Lab Manual

CASE TOOLS & SOFTWARE

1. Testing is a process of executing
2. A good test case is one that
3. A successful test is one that

Server System configuration :
MSAccess/Oracle 7.x,8.x,9/MS

ServerClient System configuration

Testing Lab List of Experiments

1. Write programs in „C‟

constructs: i) do...while ii)

2. A program written in

causes for its failure and

3. Take any system (e.g.

the various bugs.

4. Write the test cases for

5. Create a test plan document

6. Study of any testing tool

7. Study of any web testing tool (e.g. Selenium)

8. Study of any bug tracking

9. Study of any test management tool (e.g.

10. Study of any open source

SOFTWARE TESTING LAB MANUAL

OBJECTIVES OF THE LAB

of executing a program with the intent of finding an
 has a high probability of finding an as yet undiscovered

that uncovers an as yet undiscovered error.

REQUIREMENTS

 8 GB RAM , 500 MB of free disk space, Win
7.x,8.x,9/MS SQL

configuration : 2 GB RAM , 10 MB of free disk space,

Experiments

 Language to demonstrate the working of the following

do...while ii) while….do iii) if…else iv) switch v) for

in „C‟ language for Matrix Multiplication fails

and write down the possible reasons for its failure.

 ATM system) and study its system specifications

for any known application (e.g. Banking application)

document for any application (e.g. Library Management

tool (e.g. Win runner)

web testing tool (e.g. Selenium)

tracking tool (e.g. Bugzilla, bugbit)

management tool (e.g. Test Director)

open source-testing tool (e.g. Test Link)

Page 2

 error.
undiscovered error.

Win 2K3 server, IIS 6.0,

space, Win XP, IE 6.0

following a.

for

fails‖ Introspect the

failure.

specifications and report

application)

Management System)

Page 3

1. Write a „c‟ program to demonstrate the working of the fallowing constructs:

i) do…while ii) while…do iii) if …else iv) switch v) for Loops in C language

//A. AIM: To demonstrate the working of do..while construct

Objective
To understand the working of do while with different range of values and test cases

#include <stdio.h>
void main (){

int i, n=5,j=0; clrscr();
printf(―enter a no‖);

scanf(―%d‖,&i);

do{
if(i%2==0) {

}

printf("%d", i);
printf("is a even no.");
i++;
j++;

else {

}

printf("%d", i);
printf("is a odd no.\n");
i++;
j++;

}while(i>0&&j<n);
getch();

}

Input Actual output

2 2 is even number
3 is odd number
4 is even number
5 is odd number
6 is even number

Test cases:

Test case no: 1
Test case name: Positive values within range

Input =2 Expected output

2 is even number
3 is odd number

Actual output
2 is even number
3 is odd number

Remarks

success
 4 is even number

5 is odd number
4 is even number
5 is odd number

 6 is even number 6 is even number

Page 4

Test case no:2
Test case name: Negative values within a range

Input = -2 Expected output Actual output Remarks

 -2 is even number -2 is an even number
 -3 is odd number fail
 -4 is even number

 -5 is odd number

 -6 is even number

Test case no: 3

Test case name: Out of range values testing

//B. Aim:To demonstrate the working of while construct

Objective
To understand the working of while with different range of values and test cases

#include<stdio.h>
#include <conio.h>
void main (){

int i, n=5,j=1; clrscr();
printf(―enter a no‖);
scanf(―%d‖,&i);
while (i>0 && j<n){

if(i%2==0){
printf(―%d‖,i);
printf(―is a even

number‖; i++;
j++;

getch();
}

else{

}}

}

printf(―%d‖,i);
printf(―is a odd
number‖); i++;
j++;

Input Actual output

2 2 is even number
3 is odd number
4 is even number
5 is odd number
6 is even number

Input Expected output Actual output Remarks
1234567891222222222222 123456789122222222213 234567891222222215 fail

Page 5

Test cases:

Test case no: 1
Test case name: Positive values within range

Input =2 Expected output

2 is even number
3 is odd number
4 is even number

Actual output
2 is even number
3 is odd number
4 is even number

Remarks

success

 5 is odd number
6 is even number

5 is odd number
6 is even number

Test case no:2
Test case name: Negative values within a range

Input = -2 Expected output Actual output Remarks

 -2 is even number -2 is an even number

 -3 is odd number fail
 -4 is even number
 -5 is odd number
 -6 is even number

Test case no: 3

Test case name: Out of range values testing

Input Expected output Actual output Remarks
1234567891222222222222 123456789122222222213 234567891222222215 fail

//C. Aim: To demonstrate the working of if else construct

Objective
To understand the working of if else with different range of values and test cases

#include<stdio.h>
#include <conio.h>

void main (){

int i;
clrscr();
printf(―enter a number
‖); scanf(―%d‖,&i);

if(i%2==0){

}

printf(―%d‖,i);
printf(―is a even number‖);

else{

Page 6

}
getch();

}

printf(―%d‖,i);
printf(―is a odd number‖);

Input Actual output
2 2 is even number

3 is odd number
4 is even number
5 is odd number
6 is even number

Test cases:
Test case no: 1
Test case name: Positive values within range

Input =2 Expected output Actual output Remarks

 2 is even number 2 is even number
 3 is odd number 3 is odd number success
 4 is even number 4 is even number

 5 is odd number 5 is odd number
 6 is even number 6 is even number

Test case no:2
Test case name: Negative values within a range

Input = -2 Expected output Actual output Remarks

 -2 is even number -2 is an even number
 -3 is odd number fail
 -4 is even number

 -5 is odd number
 -6 is even number

Test case no: 3

Test case name: Out of range values testing

Input Expected output Actual output Remarks
1234567891222222222222 123456789122222222213 234567891222222215 fail

// D. To demonstrate the working of switch construct

Objective
To understand the working of switch with different range of values and test cases

void main() {

int a,b,c;
clrscr();
printf(―1.Add/n 2.Sub /n 3.Mul /n 4.Div /n Enter Your
choice‖); scanf(―%d‖ , &i);

Page 7

printf(―Enter a,b values‖);
scanf(―%d%d‖,&a,&b);
switch(i){

case 1: c=a+b;
printf(― The sum of a & b is: %d‖
,c); break;

case 2: c=a-b;
printf(― The Diff of a & b is: %d‖
,c); break;

case 3: c=a*b;
printf(― The Mul of a & b is: %d‖
,c); break;

case 4: c=a/b;
printf(― The Div of a & b is: %d‖
,c); break;

default:
printf(― Enter your
choice‖); break;

}
getch();
}

Output:

Input Output

Enter Ur choice: 1
Enter a, b Values: 3, 2 The sum of a & b is:5

Enter Ur choice: 2
Enter a, b Values: 3, 2 The diff of a & b is: 1

Enter Ur choice: 3
Enter a, b Values: 3, 2 The Mul of a & b is: 6

Enter Ur choice: 4
Enter a, b Values: 3, 2 The Div of a & b is: 1

Test cases:

Test case no: 1
Test case name: Positive values within range

Input Expected output Actual output Remarks

Enter Ur choice: 1

Enter a, b Values: 3, 2 The sum of a & b is:5 5

Enter Ur choice: 2
Enter a, b Values: 3, 2

The diff of a & b is: 1

1

Success

Page 8

Enter Ur choice: 3
Enter a, b Values: 3, 2

The Mul of a & b is: 6

6

Enter Ur choice: 4
Enter a, b Values: 3, 2

The Div of a & b is: 1

1

Test case no:2

Test case name: Out of range values testing

Input

Expected output

Actual output Remarks

Option: 1
a= 22222222222222

b=22222222222222 44444444444444 -2 fail

Test case no: 3

Test case name: Divide by zero

Input

Expected output

Actual output

Remarks

Option: 4

a= 10 & b=0 error

fail

// E. Aim: To demonstrate working of for construct

Objective
To understand the working of for with different range of values and test cases

#include <stdio.h>
#include <conio.h>

void main (){ int

i;
clrscr();
printf(―enter a no‖);
scanf(―%d‖,&i);

for(i=1;i<=5;i++){
if(i%2==0){

printf(―%d‖, i);
printf(― is a even
no‖); i++;

}
else{

printf(―%d‖, i);
printf(― is a odd

Page 9

}

Output:

Enter a no: 5

}
getch();

no‖); i++;
}

0 is a even no
1 is a odd no
2 is a even no
3 is a odd no
4 is a even no
5 is a odd no

Test cases:

Test case no: 1
Test case name: Positive values within range

Input =2 Expected output Actual output Remarks
 0 is even number

1 is odd number
2 is even number

0 is even number
1 is odd number
2 is even number

success

Test case no:2
Test case name: Negative values within a range

Input = -2 Expected output Actual output Remarks

 0 is even number 0 is an even number
 -1 is odd number -1 is even no fail
 -2 is even number -2 is odd no

Test case no: 3

Test case name: Out of range values testing

Input Expected output Actual output Remarks
1234567891222222222222 123456789122222222213 234567891222222215 fail

Page 10

2. Aim: A program written in c language for matrix multiplication fails “Introspect the
causes for its failure and write down the possible reasons for its failure”.

Objective: Understand the failures of matrix multiplication

#include<stdio.h>
#include<conio.h>
void main()
{
int a[3][3],b[3][3],c[3][3],i,j,k,m,n,p,q;
clrscr();
printf(― Enter 1

st
matrix no.of rows &

cols‖) scanf(―%d%d‖,&m,&n);

printf(― Enter 2
nd

matrix no.of rows &
cols‖) scanf(―%d%d‖,&p,&q);

printf("\n enter the matrix elements");
for(i=0;i<m;i++);
{
for(j=0;j<n;j++);
{
scanf("%d",&a[i][j]);
}
}

printf("\n a matrix
is\n"); for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
printf("%d\t",a[i][j]);
}
printf("\n");
}
for(i=0;i<p;i++)
{
for(j=0;j<q;j++)
{
scanf("%d\t",&b[i][j]);
}
}
printf("\n b matrix is\n");

for(i=0;i<p;i++)
{
for(j=0;j<q;j++)
{
printf("%d\t",b[i][j]);
}
printf("\n");
}

Page 11

for(i=0;i<m;i++)
{
for(j=0;j<q;j++)
{
c[i][j]=0;
for(k=0;k<n;k++)
{
c[i][j]=c[i][j]+a[i][k]*b[k][j];
}
}
}

for(i=0;i<m;i++)
{
for(j=0;j<q;j++)
{
printf("%d\t",c[i][j]);

}
printf("\n");
}

getch();
}

Output:

Enter Matrix1: 1 1 1

1 1 1
1 1 1

Enter Matrix2: 1 1 1

1 1 1
1 1 1

Actual Output : 3 3 3
3 3 3
3 3 3

Test cases:

Test case no: 1
Test case name: Equal no.of rows & cols

Input Expected output Actual output Remarks

Matrix1 rows & cols= 3 3
Matrix2 rows & cols= 3 3

Page 12

Matrix1: 1 1 1
 1 1 1 3 3 3 3 3 3

 1 1 1 3 3 3 3 3 3 Success
 3 3 3 3 3 3

Matrix2: 1 1 1

 1 1 1

 1 1 1

Test case no:2

Test case name: Cols of 1
st

matrix not equal to rows of 2
nd

matrix

Input Expected output Actual output Remarks

Matrix1 rows & cols= 2 2

Matrix2 rows & cols= 3 2

Operation Can‘t be
Performed

fail

Test case no: 3

Test case name: Out of range values testing

Input Expected output Actual output Remarks

Matrix1 rows & cols= 2 2
Matrix2 rows & cols= 2 2

fail 1234567891 2222222222
2234567891 2222222221

234567891 22222221533
213242424 56456475457

Page 13

3. Aim: Take any system (e.g. ATM system) and study its system
specifications and report the various bugs.

Program:

Features to be tested:

1. Validity of the card.
2. Withdraw Transaction flow of ATM.
3. Authentication of the user’s.
4. Dispense the cash from the account.
5. Verify the balance enquiry.
6. Change of PIN number.

Bugs Identified:

Bug-Id Bug Name
ATM_001 Invalid Card

ATM_002 Invalid PIN

ATM_003 Invalid Account type

ATM_004 Insufficient Balance

ATM_005 Transaction Limit

ATM_006 Day limit

ATM_007 Invalid money denominations

ATM_008 Receipt not printed

ATM_009 PIN change mismatch

Bug Report:

Bug Id: ATM_001
Bug Description: Invalid card
Steps to reproduce: 1. Keep valid card in the ATM.
Expected Result: Welcome Screen
Actual Result: Invalid card
Status : Pass/Fail

Bug Id: ATM_002
Bug Description: Invalid PIN entered
Steps to reproduce:

Page 14

1. Keep a valid card in ATM.
2. Enter the authorized PIN.
3. Menu screen should be displayed.
Expected Result: Menu screen displayed
Actual Result: Invalid PIN screen is displayed
Status : Pass/Fail

Bug Id: ATM_003
Bug Description: Invalid Account type selected.
Steps to reproduce:
1. Enter a valid user PIN number.
2. Select the withdraw option on the main menu.
3. Choose the correct type of account (either savings or current account).
Expected Result: Enter the Amount screen displayed
Actual Result: Invalid Account type screen is displayed.
Status : Pass/Fail

Bug Id: ATM_004
Bug Description: Insufficient Balance
Steps to reproduce:
1. Menu screen should be displayed.
2. Select the withdraw option.
3. Select the correct type of account.
4. Enter the sufficient amount to withdraw from the account.
5. Dispense the cash screen & amount to be deducted from account
Expected Result: Collect the amount screen displayed
Actual Result: Insufficient balance in the account
Status : Pass/Fail

Bug Id: ATM_005
Bug Description: Withdraw Limit per transaction.
Steps to reproduce:
1. Menu screen should be displayed.
2. Select the withdraw option.
3. Select the correct type of account.
4. Enter sufficient amount to withdraw from the account Transaction within the limit.
5. Dispense the cash screen & amount to be deducted from account.
Expected Result: Cash is dispensed and collect the receipt
Actual Result: Transaction limit exceeded screen is displayed
Status : Pass/Fail

Bug Id: ATM_006
Bug Description: Withdraw limit per day
Steps to reproduce:
1. Keep a valid card in ATM.
2. Enter the authorized PIN.
3. Enter the amount to withdraw from the account.

Page 15

4. Amount enter is over the day limit (>40000)
5. Amount enter is over the day limit and display screen is displayed.
Expected Result: Cash is dispensed and collect the receipt.
Actual Result: Day limit exceeded screen is displayed.
Status : Pass/Fail

Bug Id: ATM_007
Bug Description: Amount enter denominations
Steps to reproduce:
1. Keep a valid card in ATM.
2. Enter the authorized PIN.
3. Enter the amount which should be in multiples of 100.
4. Cash Dispenser screen is displayed.
Expected Result: Collect the amount screen is displayed.
Actual Result: Amount enter not in required denominations.
Status : Pass/Fail

Bug Id: ATM_008
Bug Description: Statement not printed
Steps to reproduce:
1. Keep a valid card in ATM.
2. Enter the authorized PIN.
3. Select the mini statement.
4. Current balance is displayed on the screen.
5. Collect printed receipt of the statement.
Expected Result: Collect the mini statement receipt
Actual Result: receipt not printed.
Status : Pass/Fail

Bug Id: ATM_009
Bug Description: PIN mismatch
Steps to reproduce:
1. Keep a valid card in ATM.
2. Enter the authorized PIN.
3. Select the change PIN option on the menu.
4. Enter the current PIN.
5. Enter the new PIN.
6. Retype the new PIN
7. PIN successfully changed displayed on the screen.
Expected Result: PIN change successful.
Actual Result: PIN mismatched due to wrong PIN entered
Status : Pass/Fail

Page 16

A P P L I
C A T I O

N

N A M E

T
es
t
C
as
e
Id

Test Scenario Test Case
Expected

Result
Actual
Result

Statu S
Test
Data

S B I

O N L I N
E

B A N K I

N G

A P P L I
C A T I O

N

1

Validate the
login page

enter
invalid/

wrong user
name and

valid
password

Enter invalid
user name and
valid password
in SBI online
Banking login

page

System should not
allow the customer

to login the SBI
online Banking

login page and it
should display the

message like
”please enter valid

user name and
password”

Customer is
not able to
login SBI

online
banking
account

Pass

Ex:

UID:a
bcdef

PWD:x
yz123

2

validate the
login page

enter invalid
user name
and invalid
password

Enter invalid user
name and invalid
pass word in SBI
online Banking

login page

System should not
allow the customer

to login the SBI
online Banking

login page and it
should display the

message like “
please enter valid

user name and
password

Customer is
not able to
login SBI

online
Banking
account

Pass

Ex:

UID:a
bcd

PWD:x
yz12

3

Validate the
login page
enter valid
user name
and invalid
password

Enter valid user
name and invalid
password in SBI
online Banking

login page

System should
allow the user to

login the SBI online
Banking login page

Customer is
logged in to
SBI online
Banking

login page

Pass

Ex:

UID:a
bcdefg

PWD:x
yz123

4

Page 17

4

Validate the
login page
enter valid
user name
and valid
password

Enter valid user
name and valid
password in SBI
online Banking

login page

System should
allow the user to

login the SBI online
Banking login page

Customer is
logged into
SBI online
Banking

login page

Pass

Ex:

UID:a
bcdefg

PWD:x

yz

123

5

Validate
the user

informatio
n or detail

in the

a) User
should
able to
login SBI

login
page

b) User
should

a) User/cus
tomer

should able
to
login

Customer is
not able to
see phone

or

fail

 profile page able to
click on
profile
link

c) On
clicking
profile
link uses
should
able to
see all
user
details
like
1) User

/custo
me r
name

2) User/c
ust
omer
addres
s
details

3) User/c
ust
omer
phone
numb
er

SBI
login
page
with
valid

b) Custome r
should be
able to click
profile link.

c) Custome r
should see
all the
custome r
informat ion
once he
clicking on
profile
hyper link

mobile
number

Page 18

5. Create a test plan document for any application (e.g. Library Management
System)

VERSION HISTORY

[Provide information on how the development and distribution of the Test Plan, up to the
final point of approval, was controlled and tracked. Use the table below to provide the
version number, the author implementing the version, the date of the version, the name of
the person approving the version, the date that particular version was approved, and a
brief description of the reason for creating the revised version.]

Versio
n

Implemented
By

Revision
Date

Approve
d

By

Approval
Date

Reason

1.0 <Author
name>

<mm/dd/yy
>

<name> <mm/dd/yy
>

Test Plan draft

1 INTRODUCTION

 PURPOSE OF THE TEST PLAN DOCUMENT

[Provide the purpose of the Test Plan Document. This document should be tailored to fit a
particular project’s needs.]
The Test Plan document documents and tracks the necessary information required to
effectively define the approach to be used in the testing of the project’s product. The Test
Plan document is created during the Planning Phase of the project. Its intended audience is
the project manager, project team, and testing team. Some portions of this document may
on occasion be shared with the client/user and other stakeholder whose input/approval into
the testing process is needed.

2 COMPATIBILITY TESTING

 TEST RISKS / ISSUES

[Describe the risks associated with product testing or provide a reference to a document
location where it is stored. Also outline appropriate mitigation strategies and contingency
plans.]

 ITEMS TO BE TESTED / NOT TESTED

[Describe the items/features/functions to be tested that are within the scope of this test
plan. Include a description of how they will be tested, when, by whom, and to what quality
standards. Also include a description of those items agreed not to be tested.]

Page 19

Item to Test Test Description Test Date Responsibility

 TEST APPROACH(S)

[Describe the overall testing approach to be used to test the project’s product. Provide an
outline of any planned tests.]

 TEST REGULATORY / MANDATE CRITERIA

[Describe any regulations or mandates that the system must be tested against.]

 TEST PASS / FAIL CRITERIA

[Describe the criteria used to determine if a test item has passed or failed its test.]

 TEST ENTRY / EXIT CRITERIA

[Describe the entry and exit criteria used to start testing and determine when to stop
testing.]

 TEST DELIVERABLES

[Describe the deliverables that will result from the testing process (documents, reports,
charts, etc.).]

 TEST SUSPENSION / RESUMPTION CRITERIA

[Describe the suspension criteria that may be used to suspend all or portions of testing.
Also describe the resumption criteria that may be used to resume testing.]

 TEST ENVIRONMENTAL / STAFFING / TRAINING NEEDS

[Describe any specific requirements needed for the testing to be performed
(hardware/software, staffing, skills training, etc).)]

3 CONFORMANCE TESTING

 TEST RISKS / ISSUES

[Describe the risks associated with product testing or provide a reference to a document
location where it is stored. Also outline appropriate mitigation strategies and contingency
plans.]

 ITEMS TO BE TESTED / NOT TESTED

[Describe the items/features/functions to be tested that are within the scope of this test
plan. Include a description of how they will be tested, when, by whom, and to what quality
standards. Also include a description of those items agreed not to be tested.]

Page 20

Item to Test Test Description Test Date Responsibility

 TEST APPROACH(S)

[Describe the overall testing approach to be used to test the project’s product. Provide an
outline of any planned tests.]

 TEST REGULATORY / MANDATE CRITERIA

[Describe any regulations or mandates that the system must be tested against.]

 TEST PASS / FAIL CRITERIA

[Describe the criteria used to determine if a test item has passed or failed its test.]

 TEST ENTRY / EXIT CRITERIA

[Describe the entry and exit criteria used to start testing and determine when to stop
testing.]

 TEST DELIVERABLES

[Describe the deliverables that will result from the testing process (documents, reports,
charts, etc.).]

 TEST SUSPENSION / RESUMPTION CRITERIA

[Describe the suspension criteria that may be used to suspend all or portions of testing.
Also describe the resumption criteria that may be used to resume testing.]

 TEST ENVIRONMENTAL / STAFFING / TRAINING NEEDS

[Describe any specific requirements needed for the testing to be performed
(hardware/software, staffing, skills training, etc).)]

4 FUNCTIONAL TESTING

 TEST RISKS / ISSUES

[Describe the risks associated with product testing or provide a reference to a document
location where it is stored. Also outline appropriate mitigation strategies and contingency
plans.]

 ITEMS TO BE TESTED / NOT TESTED

[Describe the items/features/functions to be tested that are within the scope of this test
plan. Include a description of how they will be tested, when, by whom, and to what quality
standards. Also include a description of those items agreed not to be tested.]

Item to Test Test Description Test Date Responsibility

Page 21

 TEST APPROACH(S)

[Describe the overall testing approach to be used to test the project’s product. Provide an
outline of any planned tests.]

 TEST REGULATORY / MANDATE CRITERIA

[Describe any regulations or mandates that the system must be tested against.]

 TEST PASS / FAIL CRITERIA

[Describe the criteria used to determine if a test item has passed or failed its test.]

 TEST ENTRY / EXIT CRITERIA

[Describe the entry and exit criteria used to start testing and determine when to stop
testing.]

 TEST DELIVERABLES

[Describe the deliverables that will result from the testing process (documents, reports,
charts, etc.).]

 TEST SUSPENSION / RESUMPTION CRITERIA

[Describe the suspension criteria that may be used to suspend all or portions of testing.
Also describe the resumption criteria that may be used to resume testing.]

 TEST ENVIRONMENTAL / STAFFING / TRAINING NEEDS

[Describe any specific requirements needed for the testing to be performed
(hardware/software, staffing, skills training, etc).)]

5 PERFORMANCE TESTING

 TEST RISKS / ISSUES

[Describe the risks associated with product testing or provide a reference to a document
location where it is stored. Also outline appropriate mitigation strategies and contingency
plans.]

 ITEMS TO BE TESTED / NOT TESTED

[Describe the items/features/functions to be tested that are within the scope of this test
plan. Include a description of how they will be tested, when, by whom, and to what quality
standards. Also include a description of those items agreed not to be tested.]

Item to Test Test Description Test Date Responsibility

 TEST APPROACH(S)

[Describe the overall testing approach to be used to test the project’s product. Provide an
outline of any planned tests.]

Page 22

 TEST REGULATORY / MANDATE CRITERIA

[Describe any regulations or mandates that the system must be tested against.]

 TEST PASS / FAIL CRITERIA

[Describe the criteria used to determine if a test item has passed or failed its test.]

 TEST ENTRY / EXIT CRITERIA

[Describe the entry and exit criteria used to start testing and determine when to stop
testing.]

 TEST DELIVERABLES

[Describe the deliverables that will result from the testing process (documents, reports,
charts, etc.).]

 TEST SUSPENSION / RESUMPTION CRITERIA

[Describe the suspension criteria that may be used to suspend all or portions of testing.
Also describe the resumption criteria that may be used to resume testing.]

 TEST ENVIRONMENTAL / STAFFING / TRAINING NEEDS

[Describe any specific requirements needed for the testing to be performed
(hardware/software, staffing, skills training, etc).)]

6 REGRESSION TESTING

 TEST RISKS / ISSUES

[Describe the risks associated with product testing or provide a reference to a document
location where it is stored. Also outline appropriate mitigation strategies and contingency
plans.]

 ITEMS TO BE TESTED / NOT TESTED

[Describe the items/features/functions to be tested that are within the scope of this test
plan. Include a description of how they will be tested, when, by whom, and to what quality
standards. Also include a description of those items agreed not to be tested.]

Item to Test Test Description Test Date Responsibility

 TEST APPROACH(S)

[Describe the overall testing approach to be used to test the project’s product. Provide an
outline of any planned tests.]

 TEST REGULATORY / MANDATE CRITERIA

[Describe any regulations or mandates that the system must be tested against.]

Page 23

 TEST PASS / FAIL CRITERIA

[Describe the criteria used to determine if a test item has passed or failed its test.]

 TEST ENTRY / EXIT CRITERIA

[Describe the entry and exit criteria used to start testing and determine when to stop
testing.]

 TEST DELIVERABLES

[Describe the deliverables that will result from the testing process (documents, reports,
charts, etc.).]

 TEST SUSPENSION / RESUMPTION CRITERIA

[Describe the suspension criteria that may be used to suspend all or portions of testing.
Also describe the resumption criteria that may be used to resume testing.]

 TEST ENVIRONMENTAL / STAFFING / TRAINING NEEDS

[Describe any specific requirements needed for the testing to be performed
(hardware/software, staffing, skills training, etc).)]

7 SYSTEM TESTING

 TEST RISKS / ISSUES

[Describe the risks associated with product testing or provide a reference to a document
location where it is stored. Also outline appropriate mitigation strategies and contingency
plans.]

 ITEMS TO BE TESTED / NOT TESTED

[Describe the items/features/functions to be tested that are within the scope of this test
plan. Include a description of how they will be tested, when, by whom, and to what quality
standards. Also include a description of those items agreed not to be tested.]

Item to Test Test Description Test Date Responsibility

 TEST APPROACH(S)

[Describe the overall testing approach to be used to test the project’s product. Provide an
outline of any planned tests.]

 TEST REGULATORY / MANDATE CRITERIA

[Describe any regulations or mandates that the system must be tested against.]

Page 24

 TEST PASS / FAIL CRITERIA

[Describe the criteria used to determine if a test item has passed or failed its test.]

 TEST ENTRY / EXIT CRITERIA

[Describe the entry and exit criteria used to start testing and determine when to stop
testing.]

 TEST DELIVERABLES

[Describe the deliverables that will result from the testing process (documents, reports,
charts, etc.).]

 TEST SUSPENSION / RESUMPTION CRITERIA

[Describe the suspension criteria that may be used to suspend all or portions of testing.
Also describe the resumption criteria that may be used to resume testing.]

 TEST ENVIRONMENTAL / STAFFING / TRAINING NEEDS

[Describe any specific requirements needed for the testing to be performed
(hardware/software, staffing, skills training, etc).)]

8 UNIT TESTING

 TEST RISKS / ISSUES

[Describe the risks associated with product testing or provide a reference to a document
location where it is stored. Also outline appropriate mitigation strategies and contingency
plans.]

 ITEMS TO BE TESTED / NOT TESTED

[Describe the items/features/functions to be tested that are within the scope of this test
plan. Include a description of how they will be tested, when, by whom, and to what quality
standards. Also include a description of those items agreed not to be tested.]

Item to Test Test Description Test Date Responsibility

 TEST APPROACH(S)

[Describe the overall testing approach to be used to test the project’s product. Provide an
outline of any planned tests.]

 TEST REGULATORY / MANDATE CRITERIA

[Describe any regulations or mandates that the system must be tested against.]

Page 25

 TEST PASS / FAIL CRITERIA

[Describe the criteria used to determine if a test item has passed or failed its test.]

 TEST ENTRY / EXIT CRITERIA

[Describe the entry and exit criteria used to start testing and determine when to stop
testing.]

 TEST DELIVERABLES

[Describe the deliverables that will result from the testing process (documents, reports,
charts, etc.).]

 TEST SUSPENSION / RESUMPTION CRITERIA

[Describe the suspension criteria that may be used to suspend all or portions of testing.
Also describe the resumption criteria that may be used to resume testing.]

 TEST ENVIRONMENTAL / STAFFING / TRAINING NEEDS

[Describe any specific requirements needed for the testing to be performed
(hardware/software, staffing, skills training, etc).)]

9 USER ACCEPTANCE TESTING

 TEST RISKS / ISSUES

[Describe the risks associated with product testing or provide a reference to a document
location where it is stored. Also outline appropriate mitigation strategies and contingency
plans.]

 ITEMS TO BE TESTED / NOT TESTED

[Describe the items/features/functions to be tested that are within the scope of this test
plan. Include a description of how they will be tested, when, by whom, and to what quality
standards. Also include a description of those items agreed not to be tested.]

Item to Test Test Description Test Date Responsibility

 TEST APPROACH(S)

[Describe the overall testing approach to be used to test the project’s product. Provide an
outline of any planned tests.]

 TEST REGULATORY / MANDATE CRITERIA

[Describe any regulations or mandates that the system must be tested against.]

Page 26

 TEST PASS / FAIL CRITERIA

[Describe the criteria used to determine if a test item has passed or failed its test.]

 TEST ENTRY / EXIT CRITERIA

[Describe the entry and exit criteria used to start testing and determine when to stop
testing.]

 TEST DELIVERABLES

[Describe the deliverables that will result from the testing process (documents, reports,
charts, etc.).]

 TEST SUSPENSION / RESUMPTION CRITERIA

[Describe the suspension criteria that may be used to suspend all or portions of testing.
Also describe the resumption criteria that may be used to resume testing.]

 TEST ENVIRONMENTAL / STAFFING / TRAINING NEEDS

[Describe any specific requirements needed for the testing to be performed
(hardware/software, staffing, skills training, etc).)]

TEST PLAN APPROVAL
The undersigned acknowledge they have reviewed the <Project Name> Test Plan document
and agree with the approach it presents. Any changes to this Requirements Definition will be
coordinated with and approved by the undersigned or their designated representatives.

[List the individuals whose signatures are required. Examples of such individuals are
Business Steward, Technical Steward, and Project Manager. Add additional signature
lines as necessary.]

Signature: Date:

Print Name:

Title:

Role:

Signature: Date:

Print Name:

Title:

Role:

Page 27

Signature: Date:

Print Name:

Title:

Role:

Appendix A: References

[Insert the name, version number, description, and physical location of any documents
referenced in this document. Add rows to the table as necessary.]

The following table summarizes the documents referenced in this document.

Document Name
and Version

Description Location

<Document
Name and
Version Number>

[Provide description of the
document]

<URL or Network path where
document is located>

Experiment 6

Aim: Study of Any Testing Tool(WinRunner)

WinRunner is a program that is responsible for the automated testing of software.
WinRunner is a Mercury Interactive‘s enterprise functional testing tool for Microsoft
windows applications.

Importance of Automated Testing:

1. Reduced testing time
2. Consistent test procedures – ensure process repeatability and resource

independence. Eliminates errors of manual testing
3. Reduces QA cost – Upfront cost of automated testing is easily recovered over the

lifetime of the product
4. Improved testing productivity – test suites can be run earlier and more often
5. Proof of adequate testing
6. For doing Tedious work – test team members can focus on quality areas.

WinRunner Uses:

1. With WinRunner sophisticated automated tests can be created and run on an application.
2. A series of wizards will be provided to the user, and these wizards can create tests in an

automated manner.
3. Another impressive aspect of WinRunner is the ability to record various interactions, and

transform them into scripts. WinRunner is designed for testing graphical user interfaces.
4. When the user make an interaction with the GUI, this interaction can be recorded.

Recording the interactions allows to determine various bugs that need to be fixed.

Page 28

5. When the test is completed, WinRunner will provide with detailed information
regarding the results. It will show the errors that were found, and it will also give
important information about them. The good news about these tests is that they can be
reused many times.

6. WinRunner will test the computer program in a way that is very similar to normal user
interactions. This is important, because it ensures a high level of accuracy and realism.
Even if an engineer is not physically present, the Recover manager will troubleshoot any
problems that may occur, and this will allow the tests to be completed without errors.

7. The Recover Manager is a powerful tool that can assist users with various scenarios.
This is important, especially when important data needs to be recovered.

The goal of WinRunner is to make sure business processes are properly carried out.
WinRunner uses TSL, or Test Script Language.

WinRunner Testing Modes

Context Sensitive

Context Sensitive mode records your actions on the application being tested in terms of
the GUI objects you select (such as windows, lists, and buttons), while ignoring the physical
location of the object on the screen. Every time you perform an operation on the application
being tested, a TSL statement describing the object selected and the action performed is
generated in the test script. As you record, WinRunner writes a unique description of each
selected object to a GUI map.

The GUI map consists of files maintained separately from your test scripts. If the user

interface of your application changes, you have to update only the GUI map, instead of hundreds
of tests. This allows you to easily reuse your Context Sensitive test scripts on future versions of
your application.

To run a test, you simply play back the test script. WinRunner emulates a user by moving

the mouse pointer over your application, selecting objects, and entering keyboard input.
WinRunner reads the object descriptions in the GUI map and then searches in the application
being tested for objects matching these descriptions. It can locate objects in a window even if
their placement has changed.

Analog

Analog mode records mouse clicks, keyboard input, and the exact x- and y-coordinates

traveled by the mouse. When the test is run, WinRunner retraces the mouse tracks. Use Analog
mode when exact mouse coordinates are important to your test, such as when testing a drawing
application.

The WinRunner Testing Process

Testing with WinRunner involves six main stages:

1. Create the GUI Map

The first stage is to create the GUI map so WinRunner can recognize the GUI objects in

the application being tested. Use the RapidTest Script wizard to review the user interface of

Page 29

your application and systematically add descriptions of every GUI object to the GUI map.
Alternatively, you can add descriptions of individual objects to the GUI map by clicking objects
while recording a test.

2. Create Tests

Next is creation of test scripts by recording, programming, or a combination of both.

While recording tests, insert checkpoints where we want to check the response of the application
being tested. We can insert checkpoints that check GUI objects, bitmaps, and databases. During
this process, WinRunner captures data and saves it as expected results—the expected response
of the application being tested.

3. Debug Tests

Run tests in Debug mode to make sure they run smoothly. One can set breakpoints,
monitor variables, and control how tests are run to identify and isolate defects. Test results are
saved in the debug folder, which can be discarded once debugging is finished. When WinRunner
runs a test, it checks each script line for basic syntax errors, like incorrect syntax or missing
elements in If, While, Switch, and For statements. We can use the Syntax Check options
(Tools >Syntax Check) to check for these types of syntax errors before running your test.

4. Run Tests

Tests can be run in Verify mode to test the application. Each time WinRunner encounters
a checkpoint in the test script, it compares the current data of the application being tested to the
expected data captured earlier. If any mismatches are found, WinRunner captures them as actual
results.

5. View Results

Following each test run, WinRunner displays the results in a report. The report details all

the major events that occurred during the run, such as checkpoints, error messages, system
messages, or user messages. If mismatches are detected at checkpoints during the test run, we
can view the expected results nd the actual results from the Test Results window. In cases of
bitmap mismatches, one can also view a bitmap that displays only the difference between the
expected and actual results.

We can view results in the standard WinRunner report view or in the Unified report

view. The WinRunner report view displays the test results in a Windows-style viewer. The
Unified report view displays the results in an HTML-style viewer (identical to the style used for
QuickTest Professional test results).

6. Report Defects

If a test run fails due to a defect in the application being tested, one can report

information about the defect directly from the Test Results window.
This information is sent via e-mail to the quality assurance manager, who tracks the

defect until it is fixed.

Page 30

Using Winrunner Window

Before you begin creating tests, you should familiarize yourself with the
WinRunner main window.

 To start WinRunner:

Choose Programs > WinRunner > WinRunner on the Start menu.

The first time you start WinRunner, the Welcome to WinRunner window and the

―What‘s New in WinRunner‖ help open. From the Welcome window you can create a new
test, open an existing test, or view an overview of WinRunner in your default browser.

CASE TOOLS & SOFTWARE TESTING LAB MANUAL

If you do not want this window to appear the next time you start WinRunner, clear the
Show on Startup check box. To show the Welcome to WinRunner window upon startup from
within WinRunner, choose Settings > General Options, click the Environment tab, and select
the Show Welcome screen check box.

 The Main WinRunner Window
The main WinRunner window contains the following key elements:

WinRunner title bar
Menu bar, with drop-down menus of WinRunner commands
Standard toolbar, with buttons of commands commonly used when running a
test User toolbar, with commands commonly used while creating a test
Status bar, with information on the current command, the line number of the
insertion point and the name of the current results folder

The Standard toolbar provides easy access to frequently performed tasks, such as

opening, executing, and saving tests, and viewing test results.

Standard Toolbar

The User toolbar displays the tools you frequently use to create test scripts. By default,

the User toolbar is hidden. To display the User toolbar, choose Window > User Toolbar. When
you create tests, you can minimize the WinRunner window and work exclusively from the
toolbar. The User toolbar is customizable. You choose to add or remove buttons using the
Settings > Customize User Toolbar menu option. When you re-open WinRunner, the User
toolbar appears as it was when you last closed it. The commands on the Standard toolbar and the
User toolbar are described in detail in subsequent lessons.

Note that you can also execute many commands using softkeys. Softkeys are keyboard
shortcuts for carrying out menu commands. You can configure the softkey combinations for
your keyboard using the Softkey Configuration utility in your WinRunner program group. For
more information, see the ―WinRunner at a Glance‖ chapter in your WinRunner User’s Guide.

Page 31

Now that you are familiar with the main WinRunner window, take a few minutes to
explore these window components before proceeding to the next lesson.

The Test Window
You create and run WinRunner tests in the test window. It contains the following key elements:

Test window title bar, with the name of the open test
Test script, with statements generated by recording and/or programming in TSL,
Mercury Interactive‘s Test Script Language
Execution arrow, which indicates the line of the test script being executed during a test
run, or the line that will next run if you select the Run from arrow option

 Insertion point, which indicates where you can insert or edit
text

Experiment 7:
Study of any web testing tool (e.g. Selenium)

Selenium is a robust set of tools that supports rapid development of test automation for
web-based applications. Selenium provides a rich set of testing functions specifically
geared to the needs of testing of a web application. These operations are highly flexible,
allowing many options for locating UI elements and comparing expected test results
against actual application behavior.

 One of Selenium‘s key features is the support for executing one‘s tests on multiple
browser platforms.
Selenium Components
Selenium is composed of three major tools. Each one has a specific role in aiding
the development of web application test automation.
Selenium-RC provides an API (Application Programming Interface) and library for each
of its supported languages: HTML, Java, C#, Perl, PHP, Python, and Ruby. This ability
to use Selenium-RC with a high-level programming language to develop test cases also
allows the automated testing to be integrated with a project‘s automated build
environment.
Selenium-Grid

Selenium-Grid allows the Selenium-RC solution to scale for large test suites or test suites
that must be run in multiple environments. With Selenium-Grid, multiple instances of
Selenium-RC are running on various operating system and browser configurations; Each

Page 32

of these when launching register with a hub. When tests are sent to the hub they are then
redirected to an available Selenium-RC, which will launch the browser and run the test.
This allows for running tests in parallel, with the entire test suite theoretically taking only
as long to run as the longest individual test.
* Tests developed on Firefox via Selenium-IDE can be executed on any other supported
browser via a simple Selenium-RC command line.
** Selenium-RC server can start any executable, but depending on browser security
settings there may be technical limitations that would limit certain features.
Flexibility and Extensibility
Selenium is highly flexible. There are multiple ways in which one can add functionality
to Selenium‘s framework to customize test automation for one‘s specific testing needs.
This is, perhaps, Selenium‘s strongest characteristic when compared with proprietary test
automation tools and other open source solutions. Selenium-RC support for multiple
programming and scripting languages allows the test writer to build any logic they need
into their automated testing and to use a preferred programming or scripting language of
one‘s choice.

Selenium-IDE allows for the addition of user-defined ―user-extensions‖ for creating
additional commands customized to the user‘s needs. Also, it is possible to re-configure
how the Selenium-IDE generates its Selenium-RC code. This allows users to customize
the generated code to fit in with their own test frameworks. Finally, Selenium is an Open
Source project where code can be modified and enhancements can be submitted for
contribution.
.Test Suites

A test suite is a collection of tests. Often one will run all the tests in a test suite as one
continuous batch-job.

 When using Selenium-IDE, test suites also can be defined using a simple HTML file.
The syntax again is simple. An HTML table defines a list of tests where each row
defines the filesystem path to each test. An example tells it all.

<html>
<head>
<title>Test Suite Function Tests – Priority 1</title>
</head> <body>
<table>
<tr><td>Suite Of Tests</td></tr>
<tr><td>Login</td></tr>
<tr><td>Test Searching for
Values</td></tr> <tr><td>Test
Save</td></tr>
</table>
</body> </html>
A file similar to this would allow running the tests all at once, one after another, from the
Selenium-IDE.

Test suites can also be maintained when using Selenium-RC. This is done via
programming and can be done a number of ways. Commonly Junit is used to maintain a
test suite if one is using Selenium-RC with Java. Additionally, if C# is the chosen
language, Nunit could be employed. If using an interpreted language like Python with
Selenium-RC than some simple programming would be involved in setting up a test
suite. Since the whole reason for using Sel-RC is to make use of programming logic for

Page 33

your testing this usually isn‘t a problem.
Few typical Selenium commands.

open – opens a page using a URL.
click/clickAndWait – performs a click operation, and optionally waits for a new page to
load.
verifyTitle/assertTitle – verifies an expected page title.
verifyTextPresent – verifies expected text is somewhere on the page.
verifyElementPresent – verifies an expected UI element, as defined by its HTML tag, is
present on the page.
verifyText – verifies expected text and it‘s corresponding HTML tag are present on the
page.
verifyTable – verifies a table‘s expected contents.
waitForPageToLoad – pauses execution until an expected new page loads. Called
automatically when clickAndWait is used.
waitForElementPresent – pauses execution until an expected UI element, as defined by
its HTML tag, is present on the page.

Experiment 8

Aim: Study of Any Bug Tracking Tool (Bugzilla)

Bugzilla is a ―Bug Tracking System‖ that can efficiently keep track of outstanding bugs
in a product. Multiple users can access this database and query, add and manage these bugs.
Bugzilla essentially comes to the rescue of a group of people working together on a product as it
enables them to view current bugs and make contributions to resolve issues. Its basic repository
nature works out better than the mailing list concept and an organized database is always easier
to work with.

Advantage of Using Bugzilla:

1. Bugzilla is very adaptable to various situations. Known uses currently include IT support
queues, Systems Administration deployment management, chip design and development
problem tracking (both pre-and-post fabrication), and software and hardware bug tracking for
luminaries such as Redhat, NASA, Linux-Mandrake, and VA Systems. Combined with systems
such as CVS, Bugzilla provides a powerful, easy-to-use solution to configuration management
and replication problems.

2. Bugzilla can dramatically increase the productivity and accountability of individual
employees by providing a documented workflow and positive feedback for good performance.
Ultimately, Bugzilla puts the power in user‘s hands to improve value to business while
providing a usable framework for natural attention to detail and knowledge store to flourish.

The bugzilla utility basically allows to do the following:

Add a bug into the database
Review existing bug reports
Manage the content

Bugzilla is organised in the form of bug reports that give all the information needed about a

particular bug. A bug report would consist of the following fields.

Page 34

Product–>Component
Assigned to
Status (New, Assigned, Fixed etc)
Summary
Bug priority
Bug severity (blocker, trivial etc)
Bug reporter

Using Bugzilla:

Bugzilla usage involves the following activities

Setting Parameters and Default Preferences

 Creating a New User
 Impersonating a User
 Adding Products
 Adding Product Components

Modifying Default Field Values
Creating a New Bug
Viewing Bug Reports

Setting Parameters and Default Preferences:

When we start using Bugzilla, we‘ll need to set a small number of parameters and

preferences. At a minimum, we should change the following items, to suit our particular need:

▪ Set the maintainer

▪ Set the mail_delivery_method

▪ Set bug change policies

▪ Set the display order of bug reports

To set parameters and default preferences:

1. Click Parameters at the bottom of the page.
2. Under Required Settings, add an email address in the maintainer field.
3. Click Save Changes.
4. In the left side Index list, click Email.
5. Select from the list of mail transports to match the transport we‘re using. If evaluating a

click2try application, select Test. If using SMTP, set any of the other SMTP options for
your environment. Click Save Changes.

6. In the left side Index list, click Bug Change Policies.
7. Select On for commentoncreate, which will force anyone who enters a new bug to enter a

comment, to describe the bug. Click Save Changes.
8. Click Default Preferences at the bottom of the page.
9. Select the display order from the drop-down list next to the When viewing a bug, show

comments in this order field. Click Submit Changes.

Page 35

Creating a New User

Before entering bugs, make sure we add some new users. We can enter users very easily, with a
minimum of information. Bugzilla uses the email address as the user ID, because users are
frequently notified when a bug is entered, either because they entered the bug, because the bug is
assigned to them, or because they‘ve chosen to track bugs in a certain project.

To create a new user:

1. Click Users.
2. Click add a new user.
3. Enter the Login name, in the form of an email address.
4. Enter the Real name, a password, and then click Add.
5. Select the Group access options. we‘ll probably want to enable the following options in

the row titled User is a member of these groups:

canconfirm
editbugs
editcomponents

6. Click Update when done with setting options.

Impersonating a User

Impersonating a user is possible, though rare, that we may need to file or manage a bug in an
area that is the responsibility of another user when that user is not available. Perhaps the user is
on vacation, or is temporarily assigned to another project. We can impersonate the user to create
or manage bugs that belong to that user.

Adding Products

We‘ll add a product in Bugzilla for every product we are developing. To start with,

when we first login to Bugzilla, we‘ll find a test product called TestProduct. We should delete
this and create a new product.

To add a product:

1. At the bottom of the page, click Products.
2. In the TestProduct listing, click Delete.
3. Click Yes, Delete.
4. Now click Add a product.
5. Enter a product name, such as ―Widget Design Kit.‖
6. Enter a description.

7. Click Add. A message appears that you‘ll need to add at least one component.

Adding Product Components

Products are comprised of components. Software products, in particular, are typically

made up of many functional components, which in turn are made up of program elements, like
classes and functions. It‘s not unusual in a software development team environment for different

Page 36

individuals to be responsible for the bugs that are reported against a given component. Even if
there are other programmers working on that component, it‘s not uncommon for one person,
either a project lead or manager, to be the gatekeeper for bugs. Often, they will review the bugs
as they are reported, in order to redirect them to the appropriate developer or even another team,
to review the priority and severity supplied by the reporter, and sometimes to reject bugs as
duplicates or enhancement requests, for example.

To add a component:

1. Click the link add at least one component in the message that appears after creating a
new product.

2. Enter the Component name.
3. Enter a Description.
4. Enter a default assignee. Use one of the users we‘ve created. Remember to enter the

assignee in the form of an email address.
5. Click Add.
6. To add more components, click the name of product in the message that reads edit other

components of product <product name>.

Modifying Default Field Values

Once we begin to enter new bugs, we‘ll see a number of drop-down lists containing
default values. Some of these may work just fine for our product. Others may not. We can
modify the values of these fields, adding new values and deleting old ones. Let‘s take a look at
the OS category.

To modify default field values:

1. At the bottom of the page, in the Edit section, click Field Values.
2. Click the link, in this case OS, for the field we want to edit. The OS field contains a list

of operating system names. We are going to add browsers to this list. In reality, we might
create a custom field instead, but for the sake of this example, just add them to the OS
list.

3. Click Add a value. In the Value field, enter ―IE7.‖ Click Add.
4. Click Add a value again.
5. In the Value field, enter ―Firefox 3.‖
6. Click Add.
7. Where it reads Add other values for the op_sys field, click op_sys.
8. This redisplays the table. We should now see the two new entries at the top of the table.

These values will also appear in the OS drop-down list when we create a new bug.

Creating a New Bug

Creating bugs is a big part of what Bugzilla does best.

To create a new bug:

1. In the top menu, click New.

Page 37

2. If we‘ve defined more than one component, choose the component from the component
list.

3. Select a Severity and a Priority. Severity is self-explanatory, but Priority is generally
assumed to be the lower the number, the higher the priority. So, a P1 is the highest
priority bug, a showstopper.

4. Click the OS drop-down list to see the options, including the new browser names we
entered.

5. Select one of the options.
6. Enter a summary and a description. We can add any other information of choice, but it is

not required by the system, although we may determine that our bug reporting policy
requires certain information.

7. Click Commit. Bugzilla adds our bug report to the database and displays the detail page
for that bug.

Viewing Bug Reports

Eventually, we‘ll end up with thousands of bugs listed in the system. There are several

ways to view the bugs. The easiest is to click the My Bugs link at the bottom of the page.
Because we‘ve only got one bug reported, we‘ll use the standard Search function.

To find a bug:

1. Click Reports.
2. Click the Search link on the page, not the one in the top menu. This opens a page titled

―Find a Specific Bug.‖
3. Select the Status.
4. Select the Product.
5. Enter a word that might be in the title of the bug.
6. Click Search. If any bugs meet the criteria that we have entered, Bugzilla displays them

in a list summary.
7. Click the ID number link to view the full bug report.

Modifying Bug Reports

Suppose we want to change the status of the bug. We‘ve reviewed it and have

determined that it belongs to one of the users we have created earlier

To modify a bug report:

1. Scroll down the full bug description and enter a comment in the Additional Comments
field.

2. Select ―Reassign bug to‖ and replace the default user ID with one of the other user IDs
you created. It must be in the format of an email address

Experiment 9

Aim: Study of Any Test Management Tool (TestDirector)

Test Director is a global test management solution which provides communication,

organization, documentation and structure to the testing project.

Page 38

Test Director is used for

Mapping Requirements to User acceptance test cases
Test Planning by placing all the test cases and scripts in it.
Manual testing by defining test steps and procedures
Test Execution status
Defect Management

The TestDirector Testing Process

TestDirector offers an organized framework for testing applications before they are

deployed. Since test plans evolve with new or modified application requirements, you need a
central data repository for organizing and managing the testing process. TestDirector guides
through the requirements specification, test planning, test execution, and defect tracking phases
of the testing process.The TestDirector testing process includes four phases:

Specifying Requirements

 Requirements are linked to tests and defects to provide complete traceability and aid the
decision-making process

 See what percent of requirements are covered by tests

 Each requirement in the tree is described in detail, and can include any relevant
attachments. The QA tester assigns the requirement a priority level which is taken into
consideration when the test team creates the test plan

 Import from Microsoft Word or third party RM tool

Planning Tests

The Test Plan Manager enables to divide application according to functionality.
Application can be divided into units, or subjects, by creating a test plan tree.

Define subjects according to:

o Application functionality-such as editing, file operations, and reporting o
Type of testing-such as functional, user interface, performance, and load

As the tests are also linked to defects, this helps ensure compliance with testing
requirements throughout the testing process

Running Tests

As the application constantly changes, using test lab, run manual and automated tests in
the project in order to locate defects and assess quality.

By creating test sets and choosing which tests to include in each set, test suite can be

Page 39

created. A test set is a group of tests in a TestDirector project database designed to
achieve specific testing goals.
Tests can be run manually or scheduled to run automatically based on application
dependencies.

Tracking Defects

Locating and repairing application defects efficiently is essential to the testing process.

Defects can be detected and added during all stages of the testing process. In this phase you
perform the following tasks:

This tool features a sophisticated mechanism for tracking software defects, enabling
Testing Team and the project Team to monitor defects closely from initial detection until
resolution

 By linking TestDirector to e-mail system, defect tracking information can be shared by

all Development and Management Teams, Testing and Wipro Software Quality
Assurance personnel

System Requirements for TestDirector

Server System configuration : 128 MB of RAM , 500 MB of free disk space, Win NT
server, Win 2K server, IIS 5.0, MSAccess/Oracle 7.x,8.x,9/MS SQL Server Client System
configuration : 64 MB of RAM , 10 MB of free disk space, Win 95/98/NT/2K/XP, IE 5 ,
Netscape 4.7

Experiment 10

Aim: Study of any open source testing tool (TestLink)

Testlink is an open source test management tool. It enables creation and organization of
test cases and helps manage into test plan. Allows execution of test cases from test link itself.
One can easily track test results dynamically, generate reports, generate test metrics,prioritize
test cases and assign unfinished tasks. Its a web based tool with GUI, which provides an ease to
develop test cases, organize test cases into test plans, execute these test cases and generate
reports. Test link exposes API, written in PHP, can help generate quality assurance dashboards.
The functions like AddTestCase ToTestPlan, Assign Requirements,Create TestCase etc. helps
create and organize test cases per test plan. Functions like GetTestCasesForTestPlan,
GetLastExecutionResult allows one to create quality assurance dashboard.

TestLink enables easily to create and manage Test cases as well as organize them into

Test plans. These Test plans allow team members to execute Test cases and track test results
dynamically, generate reports, trace software requirements, prioritize and assign tasks. Read
more about implemented features and try demo pages.
Overall structure

There are three cornerstones: Product, or attributes for this base. First, definition of
documentation.

Products and Test Plans

Test Plan and User. All other data are relations a couple of terms that are used throughout the

Product: A Product is something that will exist forever in TestLink. Products will

undergo many different versions throughout their life times. Product includes Test Specification

Page 40

with Test Cases and should be sorted via Keywords.

Test Plan: Test Plans are created when you‘d like to execute test cases. Test plans can be made
up of the test cases of one or many Products. Test Plan includes Builds, Test Case Suite and Test
Results.

User: An User has a Role, that defines available TestLink features.

Test Case Categorization

TestLink breaks down the test case structure into three levels Components, Categories,
and test cases. These levels are persisted throughout the application.

Component: Components are the parents of Categories. Each Component can have many
Categories.

Category: Categories are the parents of test cases. Each Category can have many test cases.

Test Case: Test cases are the fundamental piece of TestLink.

Test Specification: All Components, Categories and test cases within Product.

Test Case Suite: All Components, Categories and test cases within Test Plan.

Test Specification

Creating Test Cases

Tester must follow this structure: Component, Category and test case. At first you create
Component(s) for your Product. Component includes Categories. Category has the similar
meaning but is second level of Test Specification and includes just Test Cases.

User can also copy or move Test Cases.

Test Cases has following parts:
• Title: could include either short description or abbreviation (e.g. TL-USER-LOGIN)
• Summary: should be really short; just for overview.
• Steps: describe test scenario (input actions); can also include precondition and cleanup
information here.

• Expected results: describe checkpoints and expected behaviour a tested Product or system.

Deleting Test Cases

Test cases, Categories, and Components may be deleted from a test plan by users with
lead permissions from the ―delete test cases‖ screen. Deleting data may be useful when first
creating a test plan since there are no results. However, Deleting test cases will cause the loss of
all results associated with them. Therefore, extreme caution is recommended when using this
functionality.

Requirements relation

Test cases could be related with software/system requirements as n to n. The

Page 41

functionality must be enabled for a Product. User can assign Test Cases and Requirements via
link Assign Requirements in the main screen.

Test Plans

Test plan contains name, description, collection a chosen test cases, builds, test results,
milestones, tester assignment and priority definition.

Creating a new Test Plan

Test Plans may be deleted from the ―Create test plan‖ page (link ―Create Test Plan‖)
by users with lead privileges. Test plans are the basis for test case execution. Test plans are
made up of test cases imported from Products at a specific point of time. Test plans can only be
created by users with lead privileges. Test plans may be created from other test plans. This
allows users to create test plans from test cases that at a desired point in time. This may be
necessary when creating a test plan for a patch. In order for a user to see a test plan they must
have the propper rights. Rights may be assigned (by leads) in the define User/Project Rights
section. This is an important thing to remember when users tell you they can‘t see the project
they are working on.

Test Execution

Test execution is available when:

1. A Test Specification is written.

2. A Test Plan is created.

3. Test Case Suite (for the Test Plan) is defined.

4. A Build is created.

5. The Test plan is assigned to testers (otherwise they cannot navigate to this Test Plan).

Select a required Test Plan in main page and navigate to the ‗Execute tests‘ link. Left pane
serves for navigation in Test Case Suite via tree menu, filtering and define a tested build.

Test Status

Execution is the process of assigning a result (pass, fail, blocked) to a test case for a

specific build. ‗Blocked‘ test case is not possible to test for some reason (e.g. a problem in
configuration disallows to run a tested functionality).

Insert Test results

Test Results screen is shown via click on an appropriate Component, Category or test

case in navigation pane. The title shows the current build and owner. The colored bar indicate
status of the test case. Yellow box includes test scenario of the test case.

Updated Test Cases: If users have the proper rights they can go to the ―Update modified test
case‖ page through the link on main page. It is not necessary for users to update test cases if
there has been a change (newer version or deleted).

Page 42

Advantages:

1. Easy in tracking test cases(search with keyword, test case id, version etc)
2. We can add our custom fields to test cases.
3. Allocating the work either test case creation/execution any kind of documents is easy
4. when a test cases is updated the previous version also can be tracked
5. We can generate results build wise
6. Test plans are created for builds and work allocations can be done.
7. Report, is one of the awesome functionality present in the Test link, it generates reports
in desired format like HTML/ CSV /Excel and we can create graphs too.
8. And the above all is done on the privileges based which is an art of the testlink and i liked
this feature much

Example of TestLink workflow:

1. Administrator create a Product ―Fast Food‖ and a user Adam with rights ―leader‖ and Bela
with rights ―Senior tester‖.

2. Adam imports Software Requirements and for part of these requirements generates empty
Test cases.

3. Bela describe test sneario of these Test cases that are organized according to Components and
Categories.

4. Adam creates Keyword: ―Regression‖ and assignes this keyword to ten of these test cases.

5. Adam creates a Test Plan ―Fish & Chips‖, Build ―Fish 0.1‖ and add Test Cases with
keywords ―Regression‖.

6. Adam and Bela execute and record the testing with result: 5 passed, 1 failed and 4 are
blocked.

7. Developers make a new build ―Fish 0.2‖ and Bela tests the failed and blocked test cases
only. Exceptionaly all these five Test cases passed.

8. Manager would like to see results. Administrator explains him that he can create account
himself on the login page. Manager does it. He has ―Guest‖ rights and could see results and
Test cases. He can see that everything passed in overall report and problems in build ―Fish 0.1‖
in a report for particular Build. But he can change nothing.

INTRODUCTION ABOUT LAB

Testing is a process used to help identify the correctness, completeness and quality of
developed computer software. With that in mind, testing can never completely establish the
correctness of computer software. here are many approaches to software testing, but effective
testing of complex products is essentially a process of investigation, not merely a matter of
creating and following rote procedure. One definition of testing is "the process of questioning a
product in order to evaluate it", where the "questions" are things the tester tries to do with the
product, and the product answers with its behavior in reaction to the probing of the tester.
Although most of the intellectual processes of testing are nearly identical to that of review or

Page 43

inspection, the word testing is connoted to mean the dynamic analysis of the product—putting
the product through its paces.

Testing helps is verifying and Validating if the Software is working as it is intended to be
working. This involves using Static and Dynamic methodologies to Test the application

REFERENCES

1. Testing Computer Software, 2nd Edition by Cem Kaner, Jack Falk and Hung
2. Effective Software Testing Methodology by Willian E.Perry
3. Software Testing Foundations: A Study Guide for the Certified Tester Exam (Rockynook
Computing) by Andreas Spillner, Tilo Linz and Hans Schaefe.
4. Software Testing: A Craftsman's Approach, Third Edition by Paul Jorgensen

VIVA QUESTIONS:

1. Define SQA?

SQA stands for Software Quality Assurance. This is the measure of assuring the quality of the

software products. The major activity done here is testing. The assurance process also follows

the quality model called the QAIMODEL (Quality Assurance Institute Model).

2. What is V Testing?

‘V’ testing stands for Verification and Validation testing.

3. What is a quality?

Quality refers to the ability of products to meet the user’s needs and expectations.

4. Name the two issues for software quality.

Validation or user satisfaction, and verification or quality assurance.

5. Define user satisfaction testing.

User satisfaction testing is the process of quantifying the usability test with some measurable

attributes of the test, such as functionality, cost or ease of use.

6. Define test plan.

A test plan is developed to detect and identify potential problems before delivering the software

to its users.

7. Write the objectives of testing.

Page 44

Testing is the process of executing a program with the intent of finding errors.

A good test case is the one that has a high probability of detecting an as yet undiscovered error.

A successful test case is the one that detects an as yet undiscovered error.

8. What is cyclomatic complexity?

Cyclomatic complexity is software metric that provides a quantitative measure of the logical

complexity of a program. The value computed for cyclomatic complexity defines the number of

independent paths in the basis set of program.

9. Define corollary?

Corollary is a proposition that follows from an axiom or another proposition that has been

proven.

Name the two axioms.

Axiom1: The independence axiom. Maintain the independence of components.

Axiom2: The information axiom. Minimize the information content of the design.

10. Define coupling.

Coupling is a measure of the strength of association established by a connection from one object

or software component to another. Coupling is a binary relationship. Coupling deals with

interactions between objects or software components.

11. Name the two types of coupling in the object oriented design.

Interaction coupling and inheritance coupling.

12. Define cohesion.

Cohesion means the interactions within a single object or software component.

13. Name the types of attributes.

Single value attribute, Multiplicity or multi-value attributes, Reference to another object or

instance connection.

14. Write the syntax for presenting the attribute that was suggested by UML.

Page 45

visibility name : type_expression = initial _value

Where visibility is one of the following

+ public visibility

protected visibility

- private visibility

type_expression - type of an attribute

Initial_value is a language dependent expression for the initial value of a newly created object.

15. Write the syntax for presenting the operation that was suggested by UML

Visibility name: (parameter_list): return _type_expression

Where visibility is one of the following

+ public visibility

protected visibility

- private visibility

parameter- is a list of parameters.

Return_type_expression: is a language _dependent specification of the

Implementation of the value returned by the method.

16. What is a Façade?

Facade classes are the public classes in a package for public behavior.

17. Define DBMS?

A database management system (DBMS) is a program that enables the creation and maintenance

of a collection of related data.

18. What is database model?

Database model is a collection of logical constructs used to represent the data structure and data

relationships within the database.

Page 46

19. Name the two categories of database model?

Conceptual model and Implementation model.

20. Write the six categories for the life time of data

Transient results to the evaluation of expressions, variables involves in procedure activation,

global variables and variables that are dynamically allocated, data that exist between the

execution of a program, data that exist between the versions of a program, data that outlive a

program.

21. What is schema or metadata?

The fundamental characteristic of the database is that the DBMS contains not only the data but

the complete definition of the data formats such as data structures, types and constraints, it

manages. This description is known as the schema or metadata

22. Name the three types of data base model?

Hierarchical model, network model, relational model.

23. Define data definition language.

Data definition language (DDL) is a language used to describe the structure of and relationships

between objects stored in a database .This structure of information are termed as database

schema.

24. Define data manipulation language.

Data manipulation language (DML) is a language that allows users to access and manipulate

(such as create, save, or destroy) data organization.

25. When the transaction is said to commit.

The transaction is said to commit if all changes can be made successfully to the database.

26. When the transaction is said to abort.

The transaction is said to abort if all changes to the database can not be made successfully.

27. What is conservative or pessimistic policy?

Page 47

The most conservative way to enforce serialization is to allow a user to lock all objects or

records when they are accessed and to release the locks only after a transaction commits. This

approach is known as conservative or pessimistic policy.

28. Describe client server computing.

The client is a process (program) that sends a message to a server process (program) requesting

that the server perform a task (service).

29. Name the types of object relation mapping.

Table class mapping, Table –multiple classes mapping, Table-Inherited classes mapping, Tables-

Inherited classes mapping.

30. Write the need of middleware.

The client is a process (program) that sends a message to a server process (program) requesting

that the server perform a task (service). The key element of connectivity is the network operating

system (NOS), also known as middleware.

31. Mention the different forms of server.

File server, database server, transaction server, application server.

32. What is the use of application web server?

In a two-tier architecture, a client talks directly to a server, no intervening server. Three_ tier

architecture introduces a server that is application web server between the client and the server to

send and receive the messages.

33. Write the components of client server application.

User interface, business processing, database processing.

34. What is Object Oriented Database management system?

Object Oriented Database management system is a marriage of Object Oriented programming

and Database management system.

35. Define ODBC?

Page 48

The Open Database connectivity is an application programming interface that provides solutions

to the multi database programming interface.

36. What is the need of an Interaction diagram?

An Interaction diagram is used to trace the exception of a scenario in the same context of an

object diagram.

37. What is the need of a Class diagram?

A class diagram is used to show the existence of classes and their relationships in the logical

view of a system.

38. What is Behavior of an object?

Behavior is how an object acts and reacts in terms of its state changes and message passing.

39. What are the characteristic features of an Interaction diagram?

They include the representation of objects with its name and class name. Each object has a life

line. The order of messaging between objects is well defined.

40. Define forward engineering and revere engineering.

Forward engineering means creating a relational schema from an existing object model

Reverse engineering means creating an object model from an existing relational database layout

(schema).

41. What is Object request broker (ORB)?

Object request broker (ORB) –Middle ware that implements a communication channel through

which applications can access object interfaces and request data and services.

42. What is distributed database?

In distributed database, different portions of the database reside on different nodes (computers)

and disk drives in the network. Each portions of the database is managed by a server, a process

responsible for controlling access and retrieval of data from the database portion.

43. What does RAD stands for?

Page 49

Rapid application development (RAD) is a set of tools and techniques that can be used to build

an application faster than typically possible with traditional methods.

44. What are the traditional software development methodologies?

Most traditional development methodologies are either algorithm centric or data centric.

45. What is the MAIN benefit of designing tests early in the life cycle?

It helps prevent defects from being introduced into the code.

46. What is risk-based testing?

Risk-based testing is the term used for an approach to creating a test strategy that is based on

prioritizing tests by risk. The basis of the approach is a detailed risk analysis and prioritizing of

risks by risk level. Tests to address each risk are then specified, starting with the highest risk

first.

47. A wholesaler sells printer cartridges. The minimum order quantity is 5. There is a 20%

discount for orders of 100 or more printer cartridges. You have been asked to prepare test

cases using various values for the number of printer cartridges ordered. Which of the

following groups contain three test inputs that would be generated using Boundary Value

Analysis?

4, 5, 99

48. What is the KEY difference between preventative and reactive approaches to testing?

Preventative tests are designed early; reactive tests are designed after the software has been

produced.

49. What is the purpose of exit criteria?

To define when a test level is complete.

50. What determines the level of risk?

The likelihood of an adverse event and the impact of the event

51. When is used Decision table testing?

Decision table testing is used for testing systems for which the specification takes the form of

rules or cause-effect combinations. In a decision table the inputs are listed in a column, with the

outputs in the same column but below the inputs. The remainder of the table explores

combinations of inputs to define the outputs produced.

Learn More about Decision Table Testing Technique in the Video Tutorial here

52. What is the MAIN objective when reviewing a software deliverable?

To identify defects in any software work product.

Page 50

53. Which of the following defines the expected results of a test? Test case specification or

test design specification.

Test case specification.

54. Which is a benefit of test independence?

It avoids author bias in defining effective tests.

55. As part of which test process do you determine the exit criteria?

Test planning.

56. What is beta testing?

Testing performed by potential customers at their own locations.

